TABLE 2. Influence of Form of Moisture Bonding and Drying Temperature on the Kinetics of the
Process of Thread Deformation

i Relative deformation of threads, %
Moisture Moisture
R content cor- content cor- | Maximum corresponding | corresponding .
Experimental 3 ) L, .. .7 | corresponding
responding responding rate of de~ to elimination | to elimination| I
temperature, i . . : . . to elimination
g to beginning to maximum | formation maximum | of moisture of moisture of adsorbed
of deformation, | rate of de- |“%/min from macro~ | from micro- .
o , moisture
Yo formation, % pores pores
313 140 20-45 0.25 5.9 3.2 1.4 1.3
353 165 30-60 1.03 8.5 4.0 1.8 0.7
393 170 30-60 1.60 6.9 4.3 1.9 0.7

Thus, shrinkage effects in viscose threads when dried are governed principally by the forms of bonding
of the water eliminated, and the stabilization of the porous structure of the threads is governed by the number
of repeated drying and wetting operations. Cyclical wetting—drying thus generates a significant reduction in
the volumes of the macropores and micropores.
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INTERRELATED HEAT AND MASS TRANSFER IN
A FLUIDIZED BED IN AN OSCILLATING MODE

V. A, Sheiman UDC 66.047.01

The problem of the interrelated heat and mass transfer in a fluidized bed in an oscillating mode
is formulated with allowance for the circulating motion of the particles, andits solution is ob-
tained with some assumptions.

As is known, a specific property of heat exchange in a fluidized bed consists in the fact that the particles
of the bed undergo a brief temperature pulse in a thin layer near the grid owing to heat transfer from the fluid-
izing agent to the particle surface. The temperature of a particle falls with greater distance from the gas-
distributing grid because of the effective heat conduction of the bed and the conductive propagation of heat into
the particle, and starting with a certain height the bed becomes isothermal. Thus, the temperature of a parti-
cle in the layer near the grid differs from its temperature in the remaining volume. This temperature differ-
ence can reach considerable amounts. For example, according to the experimental data of [1] the surface of a
moist grain particle is heated by 20°C in 0.2 sec, by 30° in 0.3 sec, and by 40° after 0.5 sec. Upon further heat-
ing the temperature difference between the surface and center decreases, although even after 3 sec it was still

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 31, No. 4, pp. 651-662, October, 1976, Original article
submitted March 17, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

1171



-~

T
A bt ——=!
\ Al ¥ ——2
\ 5 —3,
N v @ /
~ A o’
S~ . ?‘ é’//
/ﬂ,—-q—;j » ——
4 b c N\
0 )]
! 2]

Fig. 1. For the formulation of the
boundary conditions: a) diagram of
mutual motion of particles and flu-
idizing medium; b) direct flow; ¢)
counterflow; 1) hot air; 2) cold air;
3) direction of particle motion.

10° despite the increase in temperature at the center of the particle-(the temperature of the heat~transfer
agent tp = 280°C). According to [2], for a moist grain A = 0.116 W/m-deg, while « = 0.7-1073 m%h; we take

o =175 W/m? -deg, and then for d = 4 mm and T = 1 sec we have Bi =3.0 and Fo = 0.05. According to [3] the
excess temperature at the surface of the particle is 48.5° (4, = 20°C), while with Bi = 4 and Fo = 0.005 (1 = 0.1
sec) it is 29°C (the temperature of the heat-transfer agent {, =130°C): in both cases the temperature at the
center of the particle is practically constant, These data pertain to heating of the particle, since because Lu «
1, it is natural to assume that the evaporation of moisture or its redistribution over the cross section of the
particle does not occur during a brief heat pulse.

At the same time, in calculations it is valid to assume that the final temperature of the material is ap-
proximately equal to the temperature of the heat-transfer agent leaving the bed [4]. For heat-sensitive prod-
ucts, however, orientation to the final temperature of the heat-transfer agent without allowance for possible
overheating of the particles near the grid can lead to irreversible changes degrading the properties of the ma-
terial of the particles (the death of living organisms, decomposition of the material, the release of undesirable
substances, melting or fusion, cracking of the particles because of thermal stresses, etc.). This pertains
especially to those particles for which one cannot neglect the temperature gradient over the cross section,
since during a brief pulse the surface layers are subjected to overheating, while the integral-average tem-
perature over the volume of the particle can remain low and its final value may not exceed the permissible
limit. Moreover, one must consider that the particle is repeatedly subjected to such overheating. An examina-
tion of the dynamics of the heating of a particle with respect to the height is especially essential for an oscillat-
ing mode of drying, since with this method of heat supply one of the elements of the intensification of the pro-
cess consists in raising the initial temperature of the heat-transfer agent during the heating periods.

Formulation of the Problem

The basic equations of interrelated heat and mass transfer {51 with boundary conditions of the third kind
are also valid for a fluidized bed. In the majority of cases of practical importance, however, the complete
system of equations and some boundary conditions can be simplified. Because of the smallness of the heat-
gradient coefficient 8 for the majority of materials [6] and the considerable time lag of moisture field relative
to the temperature field for heat-sensitive materials [7], the values of the Posnov and Lykov numbers are very
small, as an analysis shows [8]. Because of this one can also assume that the moisture content of a particle
varies only in time, remaining constant over the height of the bed. In the drying of heat-sensitive materials it
is important to achieve conditions such that deepening of the evaporation zone is prevented, i.e., so that the
moisture within the particle moves in the form of a liquid. In this case, as is known, the phase-conversion
criterion is & = 0.

In the thermal treatment of materials in a fluidized bed the system of equations must be closed by the

equation of heat balance for the fluidizing medium, which has a different form for continuous and periodic pro-
cesses. The boundary conditions at the particle surface are also changed in this case.

A periodic drying process is characterized by continuous variation with time in the temperature and
moisture content of the entire collection of particles of the bed and in the coefficients of heat and mass trans-
fer. In this case the temperature of the fluidizing medium is a function of the coordinates and time,
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Fig. 2. Graph of variation in the function Z(Fo)
[Eq. (6)]: 1) Zup = Tz "Fo; 2) Zgo = 1-vg X
Foéo'

A continuous drying process in a fluidized bed is characterized by constancy of the statistical-average
moisture of the entire bed in a given cross section with time, and the temperature of the heat-transfer agent
is also constant in time in a constant cross section of the bed. However, for each separate element of the bed
the process is unsteady, since the brief temperature pulse in the layer near the grid leads to the formation of
a transient temperature field of the moist particle, and therefore a system of equations of interrelated heat
and mass transfer is valid for the particles of the bed. In this case dt/dr = 0 and the balance equation for the
fluidizing medium can be written as [9, 10]

aF[t(h, 7)—8(R, h, Oldh = — Lc,dt. 1)
Integrating Eq. @) from t(0, 7) to t(h, 7) and from 0 to h, in dimensionless form we obtain
T(Z, Fo)=0(1, 1, Fo) - [T (0, Fo) — 8 (1, 1, Fo)]exp{—pZ). @)

Although Eq. (2) is obtained with the condition of constancy of the particle temperature over the height of
the bed, it is confirmed well by experimental data, Here the dimensionless flux of moisture can be represented
as follows:

Ki,, (Fo) = Bi,, [l — U (1, Fo)]. 3)

As is known, the motion of particles in a fluidized bed has a chaotic random nature. In this case the
velocity of particle motion can be represented as a superposition of determined and random components.

To allow for the effect of the particle motion in the bed on the variation in particle temperature over the
height of the bed we make the following assumptions:

1) the hydrodynamic environment is identical in all vertical cross sections of the bed: with this condition
the random velocity component of particle motion is reflected only in the average value of the deter-
mined component, since the point of a given horizontal cross section of the bed at which the particle is
found makes no difference at all;

2) the principle of equivalence of the choice of an arbitrary particle of the bed occurs; consequently, the
- result of an analysis of the heat and mass transfer for any particle of the bed can be extended to any
other particle of the bed.

These assumptions make it possible to formulate the following phenomenological model of heat exchange
in a fluidized bed with allowance for the circulating motion of the particles; one considers a fixed particle for
which the heat exchange takes place with a medium having a temperature which varies in accordance with
Eq. (2). Consequently, Eq. (2) reflects the presence of an ensemble of particles. Despite the chaotic nature of
particle motion in the bed, the determined component has a clearly expressed vertical reciprocating nature
(the circulating motion of the particles [11-13]). Since the gas motion occurs in only one direction (upward),
the heat exchange between the fluidizing agent and the particles proceeds by the direct-flow principle during
the upward motion of the particles (from the gas-distributing grid to the top section of the bed) and by the
counterflow principle during the downward motion of a particle (from the top section of the bed to the gas-dis-
tributing grid), as illustrated in Fig, 1.

Thus, Eq. (2) must be written as follows:

8(1, 1, Fo)+[T (0, Fo)—8(1, 1, Fo)] exp (—pZ), 0<Z<1, “)

T(z Fo= {@(1, 1, Fo)-+-[T (0, Fo)—8 (1, 1, Fo)] exp (—pZ), 1<Z<0.
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Fig. 3. Variation in temperature of fluidizing
medium: 1) initial; 2) during filtration through
the bed.

Consequently, the vertical coordinate Z is a function of time, i.e., Z(Fo). Since reciprocating particle
motion occurs, the function Z (Fo) is periodic. In the general case, as is shown in [14, 15], for example, the
average particle velocities upward \72{ and downward vg are different. Then the periiodic function Z{(Fo), as
follows from Fig. 2, can be represented in the form

Fo
Foup

F Fo -
Fo:o + (m+1) FQ-;I:? mFomet-Foup<< Fo<<{(m+ 1IYFamo

—m Fomo» MFome<<Fo < mFome+ Foup

m=0,1,2 3..).
Z (Fo)=0 for.Fo<<0 and Fo>(m--1)Fomo: F_omo=Foup+Fo do

For convenience in the later calculations we introduce the intermediate value of the quantities: 0 =< Foj,=
Foyp; 0 = Foj, = Fogg. With known average values of the dimensionless velocities of particle motion upwarc?
G’; and downward vz we have the following: Fo, = Z/Gz; Fope=(1—Z)/vz I one takes info account Fo; , and
Foj,» then the limits of Fo take the following values for upward particle motion (ascent) and downward particle
motion (descent), For the last period of particle ascent the top line in (5) is written as follows: mFopy g < Fo <
mFomg + Fo{lp; for particle descent in the last period the bottom line in (5) has the following form: mFop o +
Foyp < Fo < mFopyg + Foyp + Foj . Thus, the position of a particle along the height of the bed is determined

. by the value of Folp and Foj, during its ascent and descent, respectively. In a real fluidization process the
particle does not always reach its extreme pesitions. In calculations for the upward motion of a particle one
can consequently be limited to some value Fojp < Foyp, especially since the bed becomes isothermal after the
section of thermal stabilization. As for the downward motion of a particle, the particle temperature for Fo('ic,z
0 is of the greatest interest. With allowance for (5), Eq. (4) can be written as follows:

T(Z, Fo)=6(1, 1, Fo)-[T (0, Fo)—O (1, 1, Fo)] exp [—pZ (Fo)]. ®)

In an oscillating mode of drying the initial temperature of the heat-transfer agent is a periodic function
of time [B]:

Th, 0 < Fo<<Fol}?
T 0, Fo)={T .o, Foht kFo < Fo <Fop+ kFoc + Fo co, )
Th, FOha- kFo,—+ Fo oo <Fo<<Fop-(k-+1)Fo.. (=0, 1, 2, 3...),
T (0, Fo)=10 for Fo<<0 and Fo> (¢+1)Fo_,

The preliminary heating of the material is taken into account in Eq. (7).

In each period of heating or cooling a particle repeatedly undergoes upward and downward motion, but a
fully determined number of times. Therefore, the quantity m in Eq. (5), which characterizes the number of
ascents and descents of a particle in the bed in each of the periods of heating and cooling, is a finite quantity.
We introduce the intermediate quantities 0 = Fo! 0= Fo,, and 0 = Fo; = Fo,. A simple relationship exists
between Fo/,, Foj,, and Foj :Fo,, = mFomo + Fo/, for periods of particle ascent and Fo,, = mFopo + Foyp+
Foy, for periods o descent. The same relations aré also valid for Foy. With allowance for the intermediate
values the last two lines in (7) take the following values for the last cycles of cooling and heating: Fo}’;’a+
kFo, < Fo < Follad 4 kFo, +F0'co k=0,1,2,3,...)and Fohma + (k—1)Fo, + Fo,, < Fo < Fo‘flna +kFoq k=1,
2,3...) for'theliast cooling cycle (Fog, instead of Fo/, for all but the last cycle); Fo[2 + kFo, < Fo < Fofta +
kFo, + Fogo and Folf@ + kFo, + Fog, < Fo < Fol'# + kFog + Fog, + Fop, (k =0, 1, 2, 3...) for the last heating
cycle (Foy, instead ol% Fol'1 for all but the last cyclie).
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Thus, with allowance for the conditions formulated above, we arrive at the following initial system of
equations:

60 (X, Z,Fo) _ #0(X,Z,Fo) T 00(X Z Fo &)
dFo h ax? b X 0X
U (X, Fo) -1 02U (X, Fo) . _I‘_ oU (X, Fo) ], ©)
dFo B ax2 X X
U(X, 0)=0, 6(X, Z, 0)=0, (10)
_ WX | gy 1—U(, Fo)l=0 1
ax !X=J+ iml ( )
99X, Z, Fo) | | g 11_y(1, Fo)]KoLy —Bi{®(1, 1, Fo)
X X=t
—06(1, Z, Fo)+[T (0, Fo) — © (1, 1, Fo)]exp[ — pZ (Fo)}} =0, (12)
U (X, Fo) _o, 98X ZF9 | _, .
0X x=0 X Ix=0

Analytical Solution

Since the continuous process is of the greatest interest, we will be confined to a solution for only this
case. First we solve an auxiliary problem — Eq. (9) with the conditions (10), (11), and (13) for U. Applying
a Laplace transform, with allowance for (10) we obtain the following in the transform region in place of (9);

sU (X, s) =Ly [ ——-—mdzugg 9 4 —)I;«-m—dug(’ ) ] (14)

Let us consider the equation

d*FL(X) I dF.(X)
L) o e FX 15)
ax T x T dx r ()
with the condition
dFy (X) |
=0. 16
aX Lo 16}
We represent Fp-(X) in the form
FeX)= ¥ a, X" 7
k=0

Substituting (17) into (15) with allowance for (16), we obtain the following expression for F1(X):

= X%
FP(X)—§ QRN (2 —1 DT (18}

We note that a solution of an equation of the type of (8) was obtained in another form in [17, 18], The
function F1-(X) is even. Particular cases of the function Fpr(X) are

sh X
¥ ; Fr(0)=1.

Fo(X) = ch (X); Fy(X) = [, (X); Fa(X) =

With allowance for (13), the solution of Eq. (14} in accordance with (15) can be written in the form

U, s):A*(s)Fr(l/ Lir X), (19)

where the integration constant A*(s) is determined from the condition (11).

Let us now turn to the solution of the main problem. In the transform region we have in place of (8)

5 #O(X, 2,5) . T do(X, Z,
BX 2,9 = TG G BRI (20)
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The solution of Eq. (20) is written analogously to Eq. (19) in the form
01X, Z(s), s]=AIZ (), 5] Fp (Vs X). (21)

In the drying of heat-sensitive materials, as is known, the maximum final temperature must not exceed
the limiting permissible temperature. With preliminary heating [19] in the top section of the bed (Z = 1) the
temperature ®(1, 1, Fo) of the material is approximately equal to the maximum permissible temperature @*
and with a certain approximation it can be taken as a constant quantity. Consequently,

6(1, 1, Fo) = ©* = const. (22)

The solution of the problem will thus reflect the law of variation of the temperature of the material from
the value received in the temperature pulse at the grid to the maximum permissible value &, Consequently,
the calculation comes down to the determination of ®(X, Z, Fo) for 0 = Z = 1 with a known @&(1, 1, Fo).

‘Here we neglect the small temperature changes during the heating and cooling periods for 8(1, 1, Fo).
With allowance for (22), the condition (12) is rewritten as follows:

fiC] . .
X lx:l +Bi,, [l —U (1, Fo)] KoLy — Bi ©*[1 — exp (— pZ (Fo))] ©3)
+BiO9(l, Z, Foy—BiT (0, Fo)exp[—pZ (Fo)] = 0.
Performing the intermediate calculations and convertingto the inverse transform on the basis of the
expansion theorem, we obtain the final solution in the following form:

. . * " . K . ; P .
6/(X, Fo) = 0 — Ko*F (w,:X) Fr ((vaX) exp(— v, Fo) + [ Ko* F,. (Lu,,lX) Fr (i, X) __( Bi*Fy. (;an)
— Y1 (Vn) : ¥ (l““n) Wn
_ QF: (ing) Foup , QFy (iu,QLX) F(‘do) 1 ]exp (— p2Fo), (24)
p— I.LnFO up 14 - ].L,,FO do / '¢2 (P’n)

where Ko¥* = Bi%nKoLy; Bi* = BijnKoLy — Bi @&. In Eq. (24), ® is written as a function of the two variables X
and Fo, since Z is a function of Fo. In (24), the Fourier number takes on different values: Fo = Fo@ + kFo, +
Fog, for a cooling period and Fo = Fop'@ + kFog + Fog, + Fof, for a heating period. One must alsokonsider
that Folo and Foj, have different values for the periods of particle ascent and descent. The separate quanti-
ties in (24) are determined as follows: v = i¥s/Ly, i.e., s = —Lyv?, where s, are roots of the equation

s ! . 3
S F - =0, 25
(Fr l/ Ly X)X=1 ™ Bin Fr ‘/ Ly (25)

p = ivs, i.e., s = —p?, where in this case s are roots of the equation
(Fp Vs X)x=1 +Bi FVs=0. (26)

The values of Ji(vy) and ¢{@y,), with the substitution of vy or u, for sy, are obtained from the expression
. AErIA U . SRy
s =s{[ (e )/ 5 x) e (R )

/ 7T ’ /’__ —_ ’ ’ — 7
X [(Fp V5 X)xm1+ BiFpVs1+s [ ( Fp l/ L—sy X)X=l + BinFr |/ _Ls;] {(FxV s X)x=1 ) + Bi(Fp Vs)} @7)

We note that when s, = —Lyv%1 the second term in (27) equals zero because of (25), and when s, = —uﬁ the first
term equals zero because of (26). The value of Pj(u,), with the substitution of uy for sy, is determined from
the equation

b3 (8) = [(Fp V'8 X)x=ils + Bi (Fr V/9)s
(the index shows the parameter with respect to which the derivative must be taken);
Q, = BiJ{"™+ BiJ® - Bi 6], (28)
Q, — Bi J&™+ Bi J® —Bi6*J?, 29)
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where

(Hm (1) | p 2 .
Jom =1 [[615,,1 1 exp [— ( Foup ﬂt,z)(;711=om.o+ FOUP\”,

J‘())"1 = 8,5811 exp (— p)-

The quantity J(i) takes on different values in accordance with (5) and (7) depending on whether heating or
cooling of the material occurs and with allowance for the ascent or descent of the particles. In accordance
with (7) and Tig. 3, following the preliminary heating there occur the cooling and then the heating of the ma-
terial, which in an oscillating mode are periodically repeated. For cooling during ascent we have

/ ) .
J:;lo)”P {Thsm [615,‘,1‘) — 1 +4exp [—» k s ;L;)(nz Fo, o FOUP\H
: up .
p 2’ " (1) M , p
Xe - - Wn FO 1 Ton S a4 (6 S — 1 --exp ‘:
Xp [ ( Foup : ) co] co et ' (_\ Foup
- Pr::) (m Forné‘ Fo;lo)} )} exp [_‘“ (?p— - szz) Fé’%a]; (30)
/ J Oup

TP | Tysi® sy exp [l + —2— | Foco + Too sk i’ | 8,exp (H3+ £
Foy, Fo

) Fop— p]. (31)

do
For cooling during descent

J<1)do {Th N [Gls,(n) — 1+ exp {_( P__ ‘u,ﬂ (mFogs- FOUP\H

FOUP /
X exp [—— ( Fp — u,,) Fo co] + Teo Sk 1515m }exp[— ( Fc[: - Mi) thlza]; (32)
Oup up
d s 9 2
JE = {Thsk Vst exp l - - )FoCo } 8, -+ Teo Si3h (B8t -+ 60)} exp [( wa o do) Fop D} 33)
‘do

In Eqs. (30)-(33),k =1, 2, 3,... in the cofactors to Ty; k=90,1, 2,3... in the cofactors to Tpo- For heating
during ascent '

r . R :
Jlgl Wp_ LTh (613,‘,1” — 1 4exp [——( P p,;} (mFo o+ Foup)])

FOup
xexp| — [=F~ — uﬁ) Foco | -+ Teo (8,5t — 1) | si¥ exp [— [=£ — ui) Fé?f], (34)
Foyp ) k Foyp
J(2)uP— [Th exp h }3—:— é) )Fco ] + Teo }skJ,les,,, exp {( uf -+ Fodo) Foh~ p] (35)
do \
For heating during descent
Ty o= {Th exp[ (Ff _P‘i)F"COJ“L@o } stit (usm’— 1)6XP[~—( £ —ui)For?f], (36)
up 7 FOUP

Jt‘f’d‘): [Th (8,85 + 82)exp [( ul 4 Fp )Foco] + To 598, ] sk exp [( THE e
. Odo/

In Egs. 34)-37M k=0, 1, 2, 3...

P ma
Fop— p|.
Foie ) i PJ (37)

The quantity JI(Iil)O (i =1, 2) takes on different values in accordance with (5) depending on in which period,
during the ascent of a particle or its descent, the temperature of the material is calculated.

During the ascent of the particle

JOUP_ 558 — 1+ exp [( wy — F%.up) (mFo, 4 Fol'lp)];

J<2)UP 8,5m exp (— o)
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During the descent of the particles
i el ) ,
Jino =8t — 15 52 = (851 + 8) exp (— p). (39)
The separate quantities in (30)-(39) are determined as follows:

7

8, = exp ( wy— Lp) Foy,— exp( we— Fp )Fomo;

Fou Oup
F o . p
8, = exp ( 1y -+ ~I}—o£) Fo, 5 exp( Wr -t E ) Fomo

OdO/

. ) e, P R = 2, )
82 =exp [( Mn -+ Fodo.) (mFo o Fogo+ FOd&J—eXP [( W, + —Fﬂ_) (mFo_+ Foulf)];

l—exp(.u,f— P )kFoc

sk = ‘ P ;
1 —exp ( pi—— P )Fo
\ Foyp ¢
l—exp(p;’:—J— p )kFoC
s = - Fogo
l—exp(ﬂﬁ-i- P )FOC
do
p
l—exp[( Un— )(k+l)FoC]
(1) Oup .
Sgp1 = . ’
l—exp(p,;— FL)FOC
%up /
1 —exp ( un + p >(k+ 1)F0c]
(2) 0do
b+l = . ’
1—exp(p,‘,+ p )Foc
Fogo
1—exp<p;‘;-— P \)mFo
S(l) = Foup mo;
m ) P
l—exp(un— )Fo
Foup mo
l—exp(pf‘z—{— P )mFomo
&2 Fogo, .
l—exp(ui—l— P >Fom0
Fodo
2 P |
1 —exp [( W —+ )(m + l)Fomo]
(2) ) Fogo
Sm4-1 = N .
l——exp(u,’,-{— P )Fo,.no
Fogdo

In Eqs. (30)-(39) only the quantities marked by primes are variables. Thus, by assigning the value of
Fo), or Fog, one can calculate the temperature of the material as a function of its position in the bed at any
moment of the period of ascent or descent of a particle during its heating or cooling. The order of calculation

by Eq. (24) with allowance for (30)-(39) is as follows: for each m one calculates all n, and for each k one cal-
culates all m.

The roots up and v, have been calculated and tabulated [3, 5] for bodies of regular shape (sphere, cylin-
der, plate). In his next publication the author hopes to analyze the solution for bodies of regular shape with an
example of the calculation of the temperature field of a moist particle,
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In solving the problem the law of motion of the particles in the fluidized bed or at least the average veloc-
ity of thecirculating motion of the particles was assumed to be known. In our opinion the opposite formulation
is also possible; from the known law of variation of the temperature of a particle one can estimate its move-
ment in the fluidized bed. It seems to us that the measurement of the particle temperature is a simpler task
than the study of its motion, it being sufficient to know the particle temperature at any one point. In such a
formulation the most laborious operation is the calculation on a computer on the basis of the equations ob-
tained. However, the inverse problem can be considerably simplified for this purpose.

Bi = aR/A
Bipy = emR/Ay,
Fo = at/R

Kiy = Y (T) R/ Y (ug—ve)
Ko = p(ug—Uue)/cpyg(ty— %)

NOTATION

is the Biot number;

is the mass-exchange Biot number;

is the Fourier number;

is the mass-exchange Kirpichev humber;
is the Kossovich number;

Ly = afuy, is the Lykov number;
Pn is the Posnov number:
t(h, 1) —4%, Uy — U r oF S{r, b, T) — ¥, h o R?
T g YR P MO T I T Ay e
a is the coefficient of thermal diffusivity;
G is the coefficient of moisture diffusion;
Cp» Cma are the heat capacities of fluidizing agent and of particle material, respec-
tively;
d is the particle diameter;
I is the particle surface per unit bed height;
Fo}rln‘a is the dimensionless time of preliminary heating of material;
h, H are the current and totalheights of fluidized bed;
L is the flow rate of fluidizing agent per unit time;
R is the characteristic size of elements of bed (particles);
t is the temperature of heat-transfer agent;
0=r=R;uu. Y are the current, initial, and equilibrium moisture contents of material;
Vg is theaverage velocity of particle motion;
o is the coefficient of heat exchange between fluidizing agent and particles;
r is the particle shape factor;
Y is the specific weight of particle material;
Ym is the mass flux;
4, & are the current and initial particle temperatures, respectively;
A M are the coefficients of thermal conductivity and mass conductivity, respectively;
ur = upVLy; vE = vpALy; o is the phase-transition heat;

T is the time,
Indices
h is the heating;
co is the cooling;
up is the up;
do is the down;
c is the cycle;
mo is the motion.
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THEORY OF TWO-PHASE TRANSPIRATION
COOLING SYSTEMS, II

M. M. Levgtan, T. L. Perel'man,* UDC 536.248.2
and T. I. El'perin

A statistical mode of bubblinginporous solids is formulated. The theory developed is used for
closing the system of transport equations for a two-phase transpiration cooling system.

We shall consider here the problem of hydrodynamics and heat exchange in two-phase transpiration cool-
ing systems. In our previous paper {1], we considered the case of a porous solid consisting of capillaries with
equal or variable cross sections. However, although this model is of practical interest [2], the more often en-
countered porous materials with a highly complicated void structure remain outside the scope of applicability
of the developed theory. We shall consider here the model of liquid bubbling in porous systems ofthe fluidized-
solid and use it as a basis for writing the macroscopic continuum equations which describe the hydrodynamics and
heat exchange in two-phase transpiration cooling systems.

Statistical Model of Bubbling in a Porous Solid

The bubbling of a liquid filtering through a porous material occurs in the following manner. A vapor bub-
ble which has formed in a certain pore grows in volume, fills the entire pore, and then passes into the neighbor-
ing pores along the links connecting this pore with the others. Asa result, a vapor-filled cavity forms inside
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